on general sum-connectivity index of benzenoid systems and phenylenes
Authors
abstract
similar resources
The Atom-Bond Connectivity Index of Benzenoid Systems And Phenylenes
The atom-bond connectivity (ABC) index is a recently introduced topological index, defined as ABC(G) = ∑ uv∈E(G) √ du+dv−2 dudv , where du (or dv) is the degree the vertex u (or v). The ABC index of benzenoid systems and phenylenes are computed, a simple relation is established between the atom-bond connectivity index of a phenylene and the corresponding hexagonal squeeze in this paper. Mathema...
full textRandi} Index of Benzenoid Systems and Phenylenes*
A new parameter, related to and easily determined from the structure of a benzenoid system and that of a phenylene – the number of inlets (r) – is introduced. The connectivity (Randi}) index of both benzenoid systems and phenylenes is then shown to depend solely on the number of vertices and on r. A simple relation is established between the connectivity index of a phenylene and of the correspo...
full textSome new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
full textThe Geometric-Arithmetic Index of Benzenoid Systems and Phenylenes
The geometric-arithmetic index of graph G is defined as GA(G) = ∑ uv∈E(G) 2 √ dudv du+dv , du (or dv) is the degree the vertex u (or v). The GA index of benzenoid systems and phenylenes are computed, a simple relation is established between the geometric-arithmetic of a phenylene and the corresponding hexagonal squeeze in this paper. Mathematics Subject Classification: 05C05, 05C12
full texton the general sum–connectivity co–index of graphs
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of mathematical chemistryPublisher: university of kashan
ISSN 2228-6489
volume 1
issue Issue 2 (Special Issue Dedicated to the Pioneering Role of Ivan Gutman In Mathematical Chemistry) 2010
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023